An Action Plan for Solving Our Climate Crisis Now

1.0
Electrify Transportation
Reduce 8 gigatons of transportation emissions to 2 gigatons by 2050.
1.1
Price

Achieve price parity between EVs and gas-powered vehicles in the U.S. by 2024, in India and China by 2030.

Updated April 2024
Insufficient Progress

$54,288 (average EV) vs. $47,209 (average full-size car) in the U.S.

Source: Kelley Blue Book, 2023

1.2
Cars

Increase EV sales to 50% of all new car sales by 2030, 95% by 2040.

Updated April 2024
On Track

EV share of car sales was 17.7% in 2023

(BEVs and PHEVs)

Source: BloombergNEF, 2024

1.3
Buses

Electrify all new buses by 2025.

Updated April 2024
Insufficient Progress

43% of new bus purchases were electric in 2023

Source: BloombergNEF, 2023

1.4
Trucks

Increase sales of zero-emissions medium and heavy trucks to 30% of all new truck sales by 2030; 95% by 2045.

Updated April 2024
Failing

Electric share of global truck sales was 2% in 2023

(BEVs, FCVs, and PHEVs)

Source: BloombergNEF, 2023

1.5
Miles ↓ 5 Gt

Increase miles driven by electric vehicles (two- and three-wheelers, cars, buses, and trucks) to 50% of the global total by 2040, 95% by 2050.

Updated April 2024
Insufficient Progress

EV global share of miles driven across road vehicles in 2022: 10.4%

(BEVs, FCVs, and PHEVs)

Source: BloombergNEF, 2023

1.6
Planes ↓ 0.3 Gt

Increase low-carbon fuel (SAF) to 20% of all aviation fuel by 2025; zero-emissions fuel to 40% by 2040.

Updated April 2024
Failing

0.4% of fuel use is low carbon (SAF)

Source: BloombergNEF, 2024

1.7
Maritime ↓ 0.6 Gt

Shift all new construction to “zero-ready” ships by 2030; zero out emissions for the shipping industry by 2050.

Updated April 2024
Failing

Zero percent of new ships are carbon-neutral

Source: Global Martime Forum, 2023

2.0
Decarbonize the Grid
Reduce 24 gigatons of global electricity and heating emissions to 3 gigatons by 2050.
2.1
Zero Emissions ↓ 16.5 Gt

Tap emissions-free sources to generate 50% of electricity worldwide by 2025, 90% by 2035.

Updated April 2024
Insufficient Progress

39% of electricity came from emissions free sources in 2022

Source: Energy Institute, 2023

2.2
Solar & Wind

Make solar and wind cheaper than fossil fuels in all countries by 2025.

Updated June 2024
On Track

59% of the world’s population lives in nations where renewable sources are cheaper than fossil fuels

Source: BloombergNEF, 2024

2.3
Storage

Electricity storage drops below $50 per kWh for short duration (4–24 hours) by 2025, $10 per kWh for long duration (14–30 days) by 2030.

Updated April 2024
Failing

Short-term storage: $263/kWh

Long-term storage: New technologies needed

Source: BloombergNEF, 2023

2.4
Coal & Gas

Eliminate new coal and gas plants from 2024 on; retire or zero out emissions in existing plants by 2025 for coal and by 2035 for gas.*

Updated April 2024
Code Red

Now in operation globally: 6,580 coal-fired plants and 9,278 gas and oil plants

Source: Global Energy Monitor, 2024

As of 2023, separate figures for oil and gas plants are not available.

 

2.5
Methane Emissions ↓ 3 Gt

Reduce flaring and eliminate leaks and venting from coal, oil, and gas sites by 2025.

Updated April 2024
Code Red

Methane emissions from the energy sector were 3 gigatons in 2023

2.6
Heating & Cooking ↓ 1.5 Gt

Cut fossil fuels for heating and cooking in half by 2040.*

Updated April 2024
Failing

In 2021, building heating generated 2.5 Gt of emissions and over 7 billion people used fossil fuels for cooking

2.7
Cleaner Economy

Triple the ratio of GDP to fossil fuel consumption.

Updated April 2024
Failing

Global average: $241 of GDP per Exajoule of Fossil Fuel Consumption

3.0
Fix Food
Reduce 9 gigatons of agricultural emissions to 2 gigatons by 2050.
3.1
Farm Soils ↓ 2 Gt

Improve soil health by increasing carbon content in topsoils to a minimum of 3% by 2035.

Updated May 2024
Limited Data

Limited Data

3.2
Fertilizers ↓ 0.5 Gt

Stop overuse of nitrogen-based fertilizers and develop cleaner alternatives to cut emissions in half by 2050.

Updated April 2024
Failing

The world uses 65.5 kilograms per hectare of nitrogen-based fertilizers

Source: Food and Agriculture Organization and Our World in Data, 2023

3.3
Cows ↓ 3 Gt

Cut emissions from beef and dairy consumption by 25% by 2030, 50% by 2050.

Updated April 2024
Code Red

3.3 gigatons of emissions from beef and dairy in 2021

3.4
Rice ↓ 0.5 Gt

Reduce methane and nitrous oxide from rice farming by 50% by 2050.

Updated April 2024
Failing

1.1 gigaton of CO2e resulting from rice production

Source: Our World in Data, 2024

3.5
Food Waste ↓ 1 Gt

Cut food waste to 10% by 2050.

Updated April 2024
Failing

38% of food in the US is wasted

Source: ReFed, 2022

4.0
Protect Nature
Go from 6 gigatons of emissions to -1 gigatons by 2050.
4.1
Forests ↓ 6 Gt

Achieve net zero deforestation by 2030; end logging and other destructive practices in primary forests.

Updated April 2024
Code Red

17.6 million hectares of permanent tree cover loss

Source: Global Forest Watch, 2022

4.2
Oceans ↓ 1 Gt

Protect 30% of oceans by 2030, 50% by 2050.

Updated April 2024
Failing

8.2% of coastal oceans are protected

Source: Protected Planet, 2024

4.3
Lands

Expand protected lands to 30% by 2030, 50% by 2050.

Updated April 2024
Failing

16% of global lands are protected

Source: Protected Planet, 2024

5.0
Clean Up Industry
Reduce 12 gigatons of industrial emissions to 4 gigatons by 2050.
5.1
Steel ↓ 3 Gt

Reduce emissions from steel production 50% by 2030, 90% by 2040.

Updated April 2024
Code Red

1.9 metric tons of CO2 per metric ton of crude steel cast

Source: WorldSteel, 2023

5.2
Cement ↓ 2 Gt

Reduce emissions from cement production 25% by 2030, 90% by 2040.

Updated April 2024
Code Red

0.6 metric tons of CO2 per metric ton of cement produced

5.3
Other Industries ↓ 3 Gt

Reduce emissions from other industrial sources (primarily plastics, chemicals, paper, aluminum, glass, and apparel) 60% by 2050.

Updated April 2024
Code Red

5 gigatons emitted from other industries

Source: Climate TRACE, 2024

6.0
Remove Carbon
Remove 10 gigatons of carbon dioxide per year from the atmosphere.
6.1
Nature-Based Removal ↓ 5 Gt

Remove at least 3 gigatons per year by 2030 and 5 gigatons by 2040.

Updated April 2024
Code Red

0.02 gigatons of nature-based carbon removal being tracked

Source: Climate Focus, 2024

6.2
Engineered Removal ↓ 5 Gt

Remove at least 1 gigaton per year by 2030 and 5 gigatons by 2050.

Updated April 2024
Code Red

Currently, 0.0002 gigatons are being removed annually

Source: CDR.fyi, 2024

7.1
Net Zero Pledges

Each country commits to reach net zero by 2050.*

Updated April 2024
Insufficient Progress

China: net zero by 2060

U.S.: net zero by 2050

EU: net zero by 2050

India: net zero by 2070

Russia: net zero by 2060

7.2
Action Plans

Each country is on track to cut emissions in half by 2030.

Updated April 2024
Code Red

2030 trajectory:

China: 4°C

US: 3°C

EU: 2°C

India: 4°C

Russia: 4°C

 

Source: Climate Action Tracker, 2023

7.3
Carbon Price

National prices on greenhouse gases are set at a minimum of $75 per ton, rising 5% annually.

Updated April 2024
Insufficient Progress

Global average price: $33 per ton

23% of global emissions are covered by a carbon pricing mechanism

 

7.4
Subsidies

Direct subsidies to fossil fuel companies are eliminated.

Updated April 2024
Code Red

$1.3 trillion in explicit fossil fuel subsidies globally

7.5
Methane

Control flaring, prohibit venting, and mandate prompt capping of methane leaks.

Updated April 2024
Code Red

Countries representing 50% of global methane emissions have signed the global methane pledge

Source: Global Methane Pledge, 2024

7.6
Refrigerants

Countries commit to phasing out hydrofluorocarbons (HFCs).

Updated April 2024
On Track

All five major emitters have ratified the Kigali amendment

8.1
Voters

The climate crisis becomes a top-three issue.

Updated April 2024
Failing

Climate’s rank as top issue: seventh globally

Source: Ipsos, 2023

 

8.2
Government

A majority of key government officials support the drive to net zero.

Updated April 2024
Limited Data

Limited Data

8.3
Business

100% of Fortune Global 500 companies commit to reach net zero by 2050.

Updated April 2024
Failing

9.2% of Fortune Global 500 Companies have a net zero commitment

Source: Speed & Scale, 2024

Data is pulled from Fortune Global 500 websites to track emissions targets of each corporation

8.4
Education Equity

The world achieves universal primary and secondary education by 2040.

Updated April 2024
Failing

77% of students complete lower secondary school

Source: World Bank, 2023

8.5
Health Equity

The world eliminates gaps in pollution-linked mortality rates among racial and socioeconomic groups by 2040.

Updated April 2024
Failing

2.3 years (global average loss of life due to air pollution)

Source: Air Quality Life Index (AQLI), 2023

8.6
Economic Equity

The global clean energy transition creates 65 million fairly distributed new jobs by 2040, outpacing the loss of fossil fuel jobs.

Updated April 2024
Insufficient Progress

13.7 million people employed directly and indirectly

9.1
Batteries

10,000 GWh of batteries are produced annually at less than $80 per kWh by 2035.

Updated April 2024
On Track

Production: 2,592 per GWh

Price: $139 per kWh 

Source: BloombergNEF, 2023

9.2
Electricity

The cost of zero-emissions baseload power is lowered to $0.02 per kWh by 2030.

Updated April 2024
On Track

$0.03 per kWh for utility-scale onshore wind

$0.05 per kWh for utility-scale solar PV

9.3
Green Hydrogen

Cost of producing hydrogen from zero-emissions sources drops to $2 per kg by 2030, $1 per kg by 2040.

Updated April 2024
Failing

$2-$12 per kg, not currently produced at scale

Source: BloombergNEF, 2023

9.4
Carbon Removal

Cost of engineered carbon dioxide removal falls to $100 per ton by 2030, $50 per ton by 2040.

Updated April 2024
Code Red

Average of $715 per ton of carbon removed, not at scale

Source: CDR.fyi, 2024

9.5
Carbon-Neutral Fuels

Cost of synthetic fuel drops to $2.50 per gallon for jet fuel and $3.50 for gasoline by 2035.

Updated April 2024
Failing

Jet Fuel: $2.94 (Traditional) vs. $7.35 (Sustainable)

Vehicle Fuel: $4.02 (Diesel) vs. $4.76 (Biodiesel)

Source: International Air Transport Association, BloombergNEF, and Alternative Fuels Data Center, 2023

Diesel and Biodiesel are U.S. prices

10.1
Financial Incentives

Global government support and incentives for clean energy expand to $600 billion per year.

Updated April 2024
Limited Data

Limited Data

10.2
Government R&D

Public investment in sustainability research and development increases to $120 billion per year.

Updated April 2024
Insufficient Progress

Low carbon R&D globally: $23 billion

10.3
Venture Capital

Private investment into cleantech startups totals $50 billion per year.

Updated April 2024
Achieved

$51 billion invested in climate tech startups

Source: BloombergNEF, 2024

10.4
Project Financing

Clean energy project financing rises to $1 trillion per year.

Updated April 2024
On Track

Clean energy financing is at an all-time high, hitting $743 billion

Source: BloombergNEF, 2024

10.5
Philanthropy

Philanthropic dollars for tackling emissions grow to $30 billion per year.

Updated April 2024
Insufficient Progress

Less than 2% (between $8 billion and $13 billion) of philanthropic giving is dedicated to climate change mitigation

ResourceOctober 31, 2022

Now is The Time to Invest in Protected Bike Lanes

Photo of people riding their bicycles on the two-way Green Lake protected bike lane. Photo: Seattle Department of Transportation

As cities move to reduce pollution, draw down their emissions, and create safer streets, there is no better investment for their infrastructure dollars than protected bike lanes. This simple solution eliminates emissions, improves commute times, reduces congestion, and increases personal freedom–all without breaking the bank.

Vehicles Are The Largest Source of Emissions Within Cities

In urban environments, the largest single source of CO2 emissions is the combustion of fossil fuels in cars, trucks, and buses. As cities seek to lower the carbon footprint of moving people around, they often invest in light rail, electrified buses, and charging stations. But in the race to eliminate emissions, more drastic steps are needed.

While expanding public transit plays a crucial role in lowering emissions, most often it isn’t enough. In much of the United States, fixed routes and resource constraints limit transit’s frequency and availability. This inconvenience explains why those who can afford to own a car or take an Uber or Lyft will choose that option. The result: an income gap between those who take public transit and those who do not. 

The most livable cities of the future will be oriented around people, not cars. In addition to vibrant public spaces and walkable neighborhoods, these cities will provide a network of connected and protected lanes for short commutes and ample public transit and EV chargers for longer commutes. 

Protected Lanes Boost Ridership, Cut Emissions, and Improve Traffic for Cars

In Copenhagen, for example, there are 237 miles of bike lanes, most of which are elevated or physically separated from car traffic by a curb. In 2018, 49 percent of all commuter trips–and 28 percent of all trips–in the city were made by bike. By contrast, barely 1 percent of commuter trips in New York City and 4 percent of trips in San Francisco involved a bicycle. 

While cars emit almost a pound of CO2 per mile traveled from their tailpipes, bikes produce none at all. Switching from taking a car to riding a bike immediately cuts carbon dioxide emissions within a city. We cannot afford to wait for the EV revolution. Given the twelve-year lifespan of an average car, the transition to zero-emission vehicles will take more than two decades. Cities need to implement solutions that tackle the emissions crisis today.

Let’s be honest; commuting can be a horrific experience. In big cities around the world, traffic grinds to a halt at rush hour. In New Delhi, you can outwalk traffic. Austin slows to 6 miles per hour, Los Angeles to 8 miles per hour. On the other hand, bike riders’ average rush hour speed is 9 miles per hour. As bikes are smaller than cars, a greater volume of them can move through the same space at higher speeds during traffic jams.

Adding bike lanes doesn’t have to slow down car traffic. When New York City added a six-foot buffered bike lane by narrowing each lane in a handful of corridors, they found that car volumes were unaffected–and that those cars moved 35 percent faster. Space for on-street parking was often preserved as well. Cities don’t have to choose between creating bike lanes and improving traffic flow—they really can have it all. 

Safety is the Biggest Barrier to Cycling Adoption

Unfortunately, without dedicated lanes that physically separate bicycle traffic from cars and pedestrians, cycling will never feel safe enough for mass adoption. Adding buffers–posts, planters, or curbs–makes people far more comfortable biking on streets. Painted lanes are not enough. When a national survey asked residents why they didn’t bike, they identified separated, protected bike lanes as a key missing element. Nearly two-thirds of residents said they “would be more likely to ride a bicycle if motor vehicles and bicycles were physically separated by a barrier.” Take Seville, Spain, which saw a fivefold increase in cycling when the city added 74 miles of new and dedicated bike lanes. 

New York City Department of Transportation (DOT)
Examples from New York City’s “Better Barriers” program, testing new materials for protected bicycle lanes

When lanes are not protected, cyclists are left to navigate an obstacle course of cars turning in front of them or pulling out or pulling in. When lanes are simply painted, they are often ignored and used for cars and trucks to load or unload, forcing bike riders to cross into traffic. These lanes are often adjacent to parked cars, whose opening doors account for up to 27 percent of car-bike collisions in cities. A shared road is still a road designed primarily for cars. 

Cyclists are six times more likely to die in the United States than in Germany, the Netherlands, or Denmark, where protected cycling infrastructure is the norm. Optimizing for cyclist safety leads to significant increases–sometimes double or more—in new and existing riders. It also leads to a 44 percent reduction in cyclist fatalities and a 50 percent reduction in injuries.

These are data points and conclusions from research from around the world. But what does your gut say? Would you let your eight-year-old ride a bicycle in a city with only painted lanes? Would you let your 80-year-old parent? Of course not. If a city wants to increase cycling and reduce carbon emissions, it needs to offer cyclists an end-to-end network of protected lanes.

A Win for Mayors, Local Officials, and the Community

To counteract the trend of increasing car ownership, cities need to take action before it is too late. In a recent survey of millennials, nearly a third who did not own a car said they planned to buy one soon. Only 6 percent said they would be purchasing a purely electric vehicle. No amount of light rail or buses can turn this tide. For a city to do battle with the perceived safety and autonomy of cars, it needs to carve out more room on roadways for cyclists.

###

Need assistance? Between November 10, 2022 to February 3, 2023, Bloomberg Philanthropies will be funding grants of $400K to $1M to cities with ambitious cycling infrastructure projects. Learn more at the Bloomberg Initiative for Cycling Infrastructure.

Image Credits: Seattle Department of Transportation and New York Department of Transportation

Additional Resources